Dihydropyridine and ryanodine receptor binding after eccentric contractions in mouse skeletal muscle.

نویسندگان

  • Christopher P Ingalls
  • Gordon L Warren
  • Jia-Zheng Zhang
  • Susan L Hamilton
  • R B Armstrong
چکیده

The purpose of this study was to determine whether there are alterations in the dihydropyridine and/or ryanodine receptors that might explain the excitation-contraction uncoupling associated with eccentric contraction-induced skeletal muscle injury. The left anterior crural muscles (i.e., tibialis anterior, extensor digitorum longus, and extensor hallucis longus) of mice were injured in vivo by 150 eccentric contractions. Peak isometric tetanic torque of the anterior crural muscles was reduced approximately 45% immediately and 3 days after the eccentric contractions. Partial restoration of peak isometric tetanic and subtetanic forces of injured extensor digitorum longus muscles by 10 mM caffeine indicated the presence of excitation-contraction uncoupling. Scatchard analysis of [3H]ryanodine binding indicated that the number of ryanodine receptor binding sites was not altered immediately postinjury but decreased 16% 3 days later. Dihydropyridine receptor binding sites increased approximately 20% immediately after and were elevated to the same extent 3 days after the injury protocol. Muscle injury did not alter the sensitivity of either receptor. These data suggest that a loss or altered sensitivity of the dihydropyridine and ryanodine receptors does not contribute to the excitation-contraction uncoupling immediately after contraction-induced muscle injury. We also concluded that the loss in ryanodine receptors 3 days after injury is not the primary cause of excitation-contraction uncoupling at that time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dihydropyridine and Ryanodine Receptor Binding After

The purpose of this study was to determine if there are alterations in the dihydropyridine and/or ryanodine receptors that might explain the excitation-contraction uncoupling associated with eccentric contraction-induced skeletal muscle injury. The left anterior crural muscles (i.e., tibialis anterior, extensor digitorum longus, and extensor hallucis longus) of mice were injured in vivo by 150 ...

متن کامل

Eccentric contractions disrupt FKBP12 content in mouse skeletal muscle

Strength deficits associated with eccentric contraction-induced muscle injury stem, in part, from impaired voltage-gated sarcoplasmic reticulum (SR) Ca(2+) release. FKBP12 is a 12-kD immunophilin known to bind to the SR Ca(2+) release channel (ryanodine receptor, RyR1) and plays an important role in excitation-contraction coupling. To assess the effects of eccentric contractions on FKBP12 conte...

متن کامل

FKBP12 deficiency reduces strength deficits after eccentric contraction-induced muscle injury.

Strength deficits associated with eccentric contraction-induced muscle injury stem, in part, from excitation-contraction uncoupling. FKBP12 is a 12-kDa binding protein known to bind to the skeletal muscle sarcoplasmic reticulum Ca2+ release channel [ryanodine receptor (RyR1)] and plays an important role in excitation-contraction coupling. To assess the effects of FKBP12 deficiency on muscle inj...

متن کامل

A Monoclonal Antibody to the , 6 Subunit of the Skeletal Muscle Dihydropyridine Receptor Immunoprecipitates the Brain w - Conotoxin GVIA Receptor

Antibodies against the subunits of the dihydropyridine-sensitive L-type calcium channel of skeletal muscle were tested for their ability to immunoprecipitate the high affinity (ICd = 0.13 nM) "'I-w-conotoxin GVIA receptor from rabbit brain membranes. Monoclonal antibody VD21 against the B subunit of the dihydropyridine receptor from skeletal muscle specifically immunoprecipitated up to 86% of t...

متن کامل

Cross-linking analysis of the ryanodine receptor and alpha1-dihydropyridine receptor in rabbit skeletal muscle triads.

In mature skeletal muscle, excitation-contraction (EC) coupling is thought to be mediated by direct physical interactions between the transverse tubular, voltage-sensing dihydropyridine receptor (DHPR) and the ryanodine receptor (RyR) Ca2+ release channel of the sarcoplasmic reticulum (SR). Although previous attempts at demonstrating interactions between purified RyR and alpha1-DHPR have failed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 96 5  شماره 

صفحات  -

تاریخ انتشار 2004